Part Number Hot Search : 
MA4P74 1N524 SS351AT A6210 F105M7BP 52AMI11L FS50V BC847C
Product Description
Full Text Search
 

To Download HUFA76439P3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUFA76439P3, HUFA76439S3S
Data Sheet July 2002
71A, 60V, 0.014 Ohm, N-Channel, Logic Level UltraFET(R) Power MOSFET Packaging
JEDEC TO-220AB
SOURCE DRAIN GATE GATE SOURCE DRAIN (FLANGE)
Features
JEDEC TO-263AB
DRAIN (FLANGE)
* Ultra Low On-Resistance - rDS(ON) = 0.012, VGS = 10V - rDS(ON) = 0.014, VGS = 5V * Simulation Models - Temperature Compensated PSPICE(R) and SABERTM Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchildsemi.com * Peak Current vs Pulse Width Curve * UIS Rating Curve
HUFA76439P3
HUFA76439S3S
Symbol
D
* Switching Time vs RGS Curves
Ordering Information
PART NUMBER PACKAGE TO-220AB TO-263AB BRAND 76439P 76439S HUFA76439P3 HUFA76439S3S
G
S
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUFA76439S3ST. TC = 25oC, Unless Otherwise Specified HUFA76439P3, HUFA76439S3S UNITS V V V A A A A 60 60 16 71 75 50 48 Figure 4 Figures 6, 17, 18 155 1.04 -55 to 175 300 260 W W/oC
oC oC oC
Absolute Maximum Ratings
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS Drain Current Continuous (TC = 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES: 1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
(c)2002 Fairchild Semiconductor Corporation
HUFA76439P3, HUFA76439S3S Rev. B1
HUFA76439P3, HUFA76439S3S
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage BVDSS IDSS IGSS VGS(TH) rDS(ON) ID = 250A, V GS = 0V (Figure 12) ID = 250A, V GS = 0V , TC = -40oC (Figure 12) Zero Gate Voltage Drain Current VDS = 55V, VGS = 0V VDS = 50V, VGS = 0V, TC = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250A (Figure 11) ID = 75A, VGS = 10V (Figures 9, 10) ID = 71A, VGS = 5V (Figure 9) ID = 68A, VGS = 4.5V (Figure 9) THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient RJC RJA TO-220AB and TO-263AB 0.96 62
oC/W oC/W
TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
60 55 -
-
1 250 100
V V A A nA
VGS = 16V
1 -
0.010 0.0117 0.0125
3 0.012 0.014 0.015
V
SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) tr td(OFF) tf tOFF tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(5) Qg(TH) Qgs Qgd CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 30V, ID = 50A, Ig(REF) = 1.0mA (Figures 14, 19, 20) VDD = 30V, ID = 75A VGS = 10V, RGS = 3.9 (Figures 16, 21, 22) VDD = 30V, ID = 50A VGS = 4.5V, RGS = 3.9 (Figures 15, 21, 22) 16 300 29 105 470 200 ns ns ns ns ns ns
SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance 2745 840 145 pF pF pF 70 38 2.5 8 19 84 45 3 nC nC nC nC nC 11 125 45 125 205 255 ns ns ns ns ns ns
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage SYMBOL VSD trr QRR ISD = 54A ISD = 27A Reverse Recovery Time Reverse Recovered Charge ISD = 54A, dISD/dt = 100A/s ISD = 54A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.00 72 140 UNITS V V ns nC
(c)2002 Fairchild Semiconductor Corporation
HUFA76439P3, HUFA76439S3S Rev. B1
HUFA76439P3, HUFA76439S3S Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 60 VGS = 4.5V 40 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 80 VGS = 10V
20
0 25 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10 -3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 10 0 101
SINGLE PULSE 0.01 10 -5 10-4
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
1000
IDM, PEAK CURRENT (A)
TC = 25 oC FOR TEMPERATURES ABOVE 25 oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 10V I = I25 175 - TC 150 VGS = 5V
100
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-5 10 -4 10-3 10 -2 t, PULSE WIDTH (s) 10-1 100 101
50
FIGURE 4. PEAK CURRENT CAPABILITY
(c)2002 Fairchild Semiconductor Corporation
HUFA76439P3, HUFA76439S3S Rev. B1
HUFA76439P3, HUFA76439S3S Typical Performance Curves
1000
(Continued)
500 I AS, AVALANCHE CURRENT (A) If R = 0 tAV = (L)(I AS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(I AS*R)/(1.3*RATED BVDSS - VDD) +1]
ID, DRAIN CURRENT (A)
100
100s
100
10
OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) SINGLE PULSE TJ = MAX RATED TC = 25 oC 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
STARTING TJ = 25 oC
1ms 10ms
STARTING TJ = 150oC 10
1
100
0.01
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
150
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
120
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V
150 VGS = 10V VGS = 5V 120 VGS = 4V PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC VGS = 3.5V 30 VGS = 3V 0 5.0 0 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) 4
90
90
60 TJ = 175oC 30 TJ = -55 oC TJ = 25oC 2.0 2.5 3.0 4.5 3.5 4.0 VGS, GATE TO SOURCE VOLTAGE (V)
60
0
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
25 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 75A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (m) 20 ID = 50A PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC
2.5 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 2.0 VGS = 10V, ID = 75A
15 ID = 25A 10
1.5
1.0
5 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10
0.5 -80 -40 160 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 200
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
(c)2002 Fairchild Semiconductor Corporation
HUFA76439P3, HUFA76439S3S Rev. B1
HUFA76439P3, HUFA76439S3S Typical Performance Curves
1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, I D = 250A NORMALIZED GATE THRESHOLD VOLTAGE
(Continued)
1.2 I D = 250A
1.0
1.1
0.8
1.0
0.6
0.4 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
5000 CISS = CGS + CGD 1000 CRSS = CGD
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
10 VGS , GATE TO SOURCE VOLTAGE (V)
VDD = 30V
C, CAPACITANCE (pF)
8
6
C OSS CDS + CGD
4 WAVEFORMS IN DESCENDING ORDER: ID = 50A ID = 25A 0 15 30 45 Qg, GATE CHARGE (nC) 60 75
2
100 VGS = 0V, f = 1MHz 50 0.1 1.0 10 60 VDS , DRAIN TO SOURCE VOLTAGE (V)
0
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
1000 VGS = 4.5V, VDD = 30V, I D = 50A SWITCHING TIME (ns) SWITCHING TIME (ns) 800 tr 600
500 VGS = 10V, VDD = 30V, ID = 75A 400 td(OFF) 300 tr 200 tf
400 tf 200 td(OFF) td(ON) 0 20 30 40 RGS, GATE TO SOURCE RESISTANCE () 10 50
100 td(ON) 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE () 50
0
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
(c)2002 Fairchild Semiconductor Corporation
HUFA76439P3, HUFA76439S3S Rev. B1
HUFA76439P3, HUFA76439S3S Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
VDS RL VDD VDS VGS = 10V VGS
+
Qg(TOT)
Qg(5) VDD VGS VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 5V
DUT Ig(REF)
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
VDD DUT 0
10% 90%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH 50%
FIGURE 21. SWITCHING TIME TEST CIRCUIT
FIGURE 22. SWITCHING TIME WAVEFORM
(c)2002 Fairchild Semiconductor Corporation
HUFA76439P3, HUFA76439S3S Rev. B1
HUFA76439P3, HUFA76439S3S PSPICE Electrical Model
.SUBCKT HUFA76439 2 1 3 ;
CA 12 8 3.70e-9 CB 15 14 3.80e-9 CIN 6 8 2.60e-9
LDRAIN
rev 17 June 1999
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
DPLCAP 10
5 RLDRAIN DBREAK 11 + 17 EBREAK 18
DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
ESG + 6 8 EVTHRES + 19 8 6
IT 8 17 1 LDRAIN 2 5 1.0e-9 LGATE 1 9 5.17e-9 LSOURCE 3 7 2.33e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 4.72e-3 RGATE 9 20 0.88 RLDRAIN 2 5 10 RLGATE 1 9 51.7 RLSOURCE 3 7 23.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 4.43e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
GATE 1
LGATE
EVTEMP RGATE + 18 22 9 20
RLGATE CIN
MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3
S1A 12 S1B CA 13 + EGS 6 8 13 8
S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*225),3.5))} .MODEL DBODYMOD D (IS = 2.52e-12 RS = 3.53e-3 TRS1 = 1.79e-3 TRS2 = 1.27e-6 CJO = 2.82e-9 TT = 4.90e-8 M = 0.43) .MODEL DBREAKMOD D (RS = 1.95e-1 TRS1 = 9.01e-4 TRS2 = 2.07e-6) .MODEL DPLCAPMOD D (CJO = 2.28e-9 IS = 1e-30 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 1.88 KP = 2.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.88) .MODEL MSTROMOD NMOS (VTO = 2.31 KP = 137 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.65 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.8 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.19e-3 TC2 = -1.91e-7) .MODEL RDRAINMOD RES (TC1 = 1.15e-2 TC2 = 3.07e-5) .MODEL RSLCMOD RES (TC1 = 9.92e-4 TC2 = 1.23e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.65e-3 TC2 = -7.94e-6) .MODEL RVTEMPMOD RES (TC1 = -1.39e-3 TC2 = -2.13e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.0 VOFF= -2.5) VON = -2.5 VOFF= -6.0) VON = -0.5 VOFF= 0.0) VON = 0.0 VOFF= -0.5)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2002 Fairchild Semiconductor Corporation
+
-
EBREAK 11 7 17 18 66.25 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
RDRAIN 21 16
DBODY
MWEAK MMED
RBREAK 18 RVTEMP 19
VBAT +
8 22 RVTHRES
HUFA76439P3, HUFA76439S3S Rev. B1
HUFA76439P3, HUFA76439S3S SABER Electrical Model
REV 17 June 1999 template ta76445 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 2.52e-12, cjo = 2.82e-9, tt = 4.90e-8, m = 0.43) d..model dbreakmod = () d..model dplcapmod = (cjo = 2.28e-9, is = 1e-30, m = 0.85 ) m..model mmedmod = (type=_n, vto = 1.88, kp = 2.1, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.31, kp = 137, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.65, kp = 0.05, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6, voff = -2.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.5, voff = -6) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -0.5) c.ca n12 n8 = 3.70e-9 c.cb n15 n14 = 3.80e-9 c.cin n6 n8 = 2.60e-9 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.17e-9 l.lsource n3 n7 = 2.33e-9
GATE 1 RLGATE CIN LGATE
LDRAIN DPLCAP 10 RSLC1 51 RSLC2 ISCL RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED MSTRO 8 EBREAK + 17 18 71 RDBODY 5 DRAIN 2
ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8
50 RDRAIN 21 16
DBODY
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1.19e-3, tc2 = -1.91e-7 res.rdbody n71 n5 = 3.53e-3, tc1 = 1.79e-3, tc2 = 1.27e-6 res.rdbreak n72 n5 = 1.95e-1, tc1 = 9.01e-4, tc2 = 2.07e-6 res.rdrain n50 n16 = 4.72e-3, tc1 = 1.15e-2, tc2 = 3.07e-5 res.rgate n9 n20 = 0.88 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 51.7 res.rlsource n3 n7 = 23.3 res.rslc1 n5 n51 = 1e-6, tc1 = 9.92e-4, tc2 = 1.23e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 4.43e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.39e-3, tc2 = -2.13e-7 res.rvthres n22 n8 = 1, tc1 = -2.65e-3, tc2 = -7.94e-6 spe.ebreak n11 n7 n17 n18 = 66.25 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/225))** 3.5)) } }
S1A 12 13 8 S1B CA 13 + EGS 6 8 S2A 14 13 S2B
RSOURCE
LSOURCE 7 RLSOURCE SOURCE 3
15
RBREAK 17 18 RVTEMP
CB + EDS 5 8 14 IT
19
VBAT +
-
-
8 22 RVTHRES
(c)2002 Fairchild Semiconductor Corporation
HUFA76439P3, HUFA76439S3S Rev. B1
HUFA76439P3, HUFA76439S3S SPICE Thermal Model
REV 23 June 1999 HUFA76439T CTHERM1 th 6 3.00e-3 CTHERM2 6 5 1.90e-2 CTHERM3 5 4 6.95e-3 CTHERM4 4 3 7.00e-3 CTHERM5 3 2 2.95e-2 CTHERM6 2 tl 12.55 RTHERM1 th 6 6.32e-3 RTHERM2 6 5 1.57e-2 RTHERM3 5 4 4.43e-2 RTHERM4 4 3 2.49e-1 RTHERM5 3 2 3.75e-1 RTHERM6 2 tl 4.98e-2
RTHERM1 CTHERM1 th JUNCTION
6
RTHERM2
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUFA76445T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 3.00e-3 ctherm.ctherm2 6 5 = 1.90e-2 ctherm.ctherm3 5 4 = 6.95e-3 ctherm.ctherm4 4 3 = 7.00e-3 ctherm.ctherm5 3 2 = 2.95e-2 ctherm.ctherm6 2 tl = 12.55 rtherm.rtherm1 th 6 = 6.32e-3 rtherm.rtherm2 6 5 = 1.57e-2 rtherm.rtherm3 5 4 = 4.43e-2 rtherm.rtherm4 4 3 = 2.49e-1 rtherm.rtherm5 3 2 = 3.75e-1 rtherm.rtherm6 2 tl = 4.98e-2 }
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
(c)2002 Fairchild Semiconductor Corporation
HUFA76439P3, HUFA76439S3S Rev. B1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx FACT ActiveArray FACT Quiet Series Bottomless FASTa CoolFET FASTr CROSSVOLT FRFET DOME GlobalOptoisolator EcoSPARK GTO E2CMOSTM HiSeC EnSignaTM I2C Across the board. Around the world. The Power Franchise Programmable Active Droop
DISCLAIMER
ImpliedDisconnect PACMAN POP ISOPLANAR Power247 LittleFET PowerTrencha MicroFET QFET MicroPak QS MICROWIRE QT Optoelectronics MSX Quiet Series MSXPro RapidConfigure OCX RapidConnect OCXPro SILENT SWITCHERa OPTOLOGICa SMART START OPTOPLANAR
SPM Stealth SuperSOT-3 SuperSOT-6 SuperSOT-8 SyncFET TinyLogic TruTranslation UHC UltraFETa VCX
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design First Production Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Preliminary
No Identification Needed
Full Production
Obsolete
Not In Production
Rev. I1


▲Up To Search▲   

 
Price & Availability of HUFA76439P3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X